3.4.87 \(\int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx\) [387]

Optimal. Leaf size=288 \[ \frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {ArcTan}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{f}-\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {ArcTan}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}+2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{f}-\frac {\tanh ^{-1}\left (\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {\log \left (1+\sqrt {2}+\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}+\frac {\log \left (1+\sqrt {2}+\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f} \]

[Out]

-arctanh((1+tan(f*x+e))^(1/2))/f+1/2*arctan(((2+2*2^(1/2))^(1/2)-2*(1+tan(f*x+e))^(1/2))/(-2+2*2^(1/2))^(1/2))
*(2+2*2^(1/2))^(1/2)/f-1/2*arctan(((2+2*2^(1/2))^(1/2)+2*(1+tan(f*x+e))^(1/2))/(-2+2*2^(1/2))^(1/2))*(2+2*2^(1
/2))^(1/2)/f-1/2*ln(1+2^(1/2)-(2+2*2^(1/2))^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))/f/(2+2*2^(1/2))^(1/2)+1/2*l
n(1+2^(1/2)+(2+2*2^(1/2))^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))/f/(2+2*2^(1/2))^(1/2)-cot(f*x+e)*(1+tan(f*x+e
))^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 288, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 13, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.619, Rules used = {3649, 3734, 3566, 714, 1141, 1175, 632, 210, 1178, 642, 3715, 65, 213} \begin {gather*} \frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {ArcTan}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {\tan (e+f x)+1}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{f}-\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {2}\right )} \text {ArcTan}\left (\frac {2 \sqrt {\tan (e+f x)+1}+\sqrt {2 \left (1+\sqrt {2}\right )}}{\sqrt {2 \left (\sqrt {2}-1\right )}}\right )}{f}-\frac {\log \left (\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}+\frac {\log \left (\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {\tan (e+f x)+1}+\sqrt {2}+1\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}-\frac {\tanh ^{-1}\left (\sqrt {\tan (e+f x)+1}\right )}{f}-\frac {\sqrt {\tan (e+f x)+1} \cot (e+f x)}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2*Sqrt[1 + Tan[e + f*x]],x]

[Out]

(Sqrt[(1 + Sqrt[2])/2]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] - 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]])/f -
(Sqrt[(1 + Sqrt[2])/2]*ArcTan[(Sqrt[2*(1 + Sqrt[2])] + 2*Sqrt[1 + Tan[e + f*x]])/Sqrt[2*(-1 + Sqrt[2])]])/f -
ArcTanh[Sqrt[1 + Tan[e + f*x]]]/f - Log[1 + Sqrt[2] + Tan[e + f*x] - Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*
x]]]/(2*Sqrt[2*(1 + Sqrt[2])]*f) + Log[1 + Sqrt[2] + Tan[e + f*x] + Sqrt[2*(1 + Sqrt[2])]*Sqrt[1 + Tan[e + f*x
]]]/(2*Sqrt[2*(1 + Sqrt[2])]*f) - (Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]])/f

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 714

Int[Sqrt[(d_) + (e_.)*(x_)]/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[2*e, Subst[Int[x^2/(c*d^2 + a*e^2 - 2*c*d
*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1141

Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, Dist[1/2, Int[(q + x^2)/(
a + b*x^2 + c*x^4), x], x] - Dist[1/2, Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] && Lt
Q[b^2 - 4*a*c, 0] && PosQ[a*c]

Rule 1175

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e) - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[2*(d/e) - b/c, 0] || ( !Lt
Q[2*(d/e) - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rule 1178

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e) - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rule 3566

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \cot ^2(e+f x) \sqrt {1+\tan (e+f x)} \, dx &=-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}-\int \frac {\cot (e+f x) \left (-\frac {1}{2}+\tan (e+f x)+\frac {1}{2} \tan ^2(e+f x)\right )}{\sqrt {1+\tan (e+f x)}} \, dx\\ &=-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}+\frac {1}{2} \int \frac {\cot (e+f x) \left (1+\tan ^2(e+f x)\right )}{\sqrt {1+\tan (e+f x)}} \, dx-\int \sqrt {1+\tan (e+f x)} \, dx\\ &=-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1+x}} \, dx,x,\tan (e+f x)\right )}{2 f}-\frac {\text {Subst}\left (\int \frac {\sqrt {1+x}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}+\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {2 \text {Subst}\left (\int \frac {x^2}{2-2 x^2+x^4} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{f}\\ &=-\frac {\tanh ^{-1}\left (\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}+\frac {\text {Subst}\left (\int \frac {\sqrt {2}-x^2}{2-2 x^2+x^4} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {\text {Subst}\left (\int \frac {\sqrt {2}+x^2}{2-2 x^2+x^4} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{f}\\ &=-\frac {\tanh ^{-1}\left (\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}-\frac {\text {Subst}\left (\int \frac {1}{\sqrt {2}-\sqrt {2 \left (1+\sqrt {2}\right )} x+x^2} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{2 f}-\frac {\text {Subst}\left (\int \frac {1}{\sqrt {2}+\sqrt {2 \left (1+\sqrt {2}\right )} x+x^2} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{2 f}-\frac {\text {Subst}\left (\int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}+2 x}{-\sqrt {2}-\sqrt {2 \left (1+\sqrt {2}\right )} x-x^2} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}-\frac {\text {Subst}\left (\int \frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 x}{-\sqrt {2}+\sqrt {2 \left (1+\sqrt {2}\right )} x-x^2} \, dx,x,\sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}\\ &=-\frac {\tanh ^{-1}\left (\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {\log \left (1+\sqrt {2}+\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}+\frac {\log \left (1+\sqrt {2}+\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}+\frac {\text {Subst}\left (\int \frac {1}{2 \left (1-\sqrt {2}\right )-x^2} \, dx,x,-\sqrt {2 \left (1+\sqrt {2}\right )}+2 \sqrt {1+\tan (e+f x)}\right )}{f}+\frac {\text {Subst}\left (\int \frac {1}{2 \left (1-\sqrt {2}\right )-x^2} \, dx,x,\sqrt {2 \left (1+\sqrt {2}\right )}+2 \sqrt {1+\tan (e+f x)}\right )}{f}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}-2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{\sqrt {2 \left (-1+\sqrt {2}\right )} f}-\frac {\tan ^{-1}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )}+2 \sqrt {1+\tan (e+f x)}}{\sqrt {2 \left (-1+\sqrt {2}\right )}}\right )}{\sqrt {2 \left (-1+\sqrt {2}\right )} f}-\frac {\tanh ^{-1}\left (\sqrt {1+\tan (e+f x)}\right )}{f}-\frac {\log \left (1+\sqrt {2}+\tan (e+f x)-\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}+\frac {\log \left (1+\sqrt {2}+\tan (e+f x)+\sqrt {2 \left (1+\sqrt {2}\right )} \sqrt {1+\tan (e+f x)}\right )}{2 \sqrt {2 \left (1+\sqrt {2}\right )} f}-\frac {\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.26, size = 102, normalized size = 0.35 \begin {gather*} -\frac {\tanh ^{-1}\left (\sqrt {1+\tan (e+f x)}\right )-i \sqrt {1-i} \tanh ^{-1}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1-i}}\right )+i \sqrt {1+i} \tanh ^{-1}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1+i}}\right )+\cot (e+f x) \sqrt {1+\tan (e+f x)}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2*Sqrt[1 + Tan[e + f*x]],x]

[Out]

-((ArcTanh[Sqrt[1 + Tan[e + f*x]]] - I*Sqrt[1 - I]*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 - I]] + I*Sqrt[1 + I]
*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 + I]] + Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]])/f)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.80, size = 8262, normalized size = 28.69

method result size
default \(\text {Expression too large to display}\) \(8262\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(tan(f*x + e) + 1)*cot(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1058 vs. \(2 (234) = 468\).
time = 1.15, size = 1058, normalized size = 3.67 \begin {gather*} \frac {2^{\frac {1}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} {\left (2 \, f \cos \left (f x + e\right )^{2} - \sqrt {2} {\left (f^{3} \cos \left (f x + e\right )^{2} - f^{3}\right )} \sqrt {\frac {1}{f^{4}}} - 2 \, f\right )} \frac {1}{f^{4}}^{\frac {1}{4}} \log \left (\frac {2^{\frac {3}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{3} \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {3}{4}} \cos \left (f x + e\right ) + 2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} \cos \left (f x + e\right ) + 2 \, \cos \left (f x + e\right ) + 2 \, \sin \left (f x + e\right )}{2 \, \cos \left (f x + e\right )}\right ) - 2^{\frac {1}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} {\left (2 \, f \cos \left (f x + e\right )^{2} - \sqrt {2} {\left (f^{3} \cos \left (f x + e\right )^{2} - f^{3}\right )} \sqrt {\frac {1}{f^{4}}} - 2 \, f\right )} \frac {1}{f^{4}}^{\frac {1}{4}} \log \left (-\frac {2^{\frac {3}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{3} \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {3}{4}} \cos \left (f x + e\right ) - 2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} \cos \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 2 \, \sin \left (f x + e\right )}{2 \, \cos \left (f x + e\right )}\right ) + 8 \, \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 4 \, {\left (\cos \left (f x + e\right )^{2} - 1\right )} \log \left (\sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} + 1\right ) + 4 \, {\left (\cos \left (f x + e\right )^{2} - 1\right )} \log \left (\sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} - 1\right ) + \frac {4 \cdot 2^{\frac {3}{4}} {\left (f^{5} \cos \left (f x + e\right )^{2} - f^{5}\right )} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} \frac {1}{f^{4}}^{\frac {1}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} \sqrt {\frac {1}{2}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{5} \sqrt {\frac {2^{\frac {3}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{3} \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {3}{4}} \cos \left (f x + e\right ) + 2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} \cos \left (f x + e\right ) + 2 \, \cos \left (f x + e\right ) + 2 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {5}{4}} - \frac {1}{2} \cdot 2^{\frac {3}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{5} \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {5}{4}} - f^{2} \sqrt {\frac {1}{f^{4}}} - \sqrt {2}\right )}{f^{4}} + \frac {4 \cdot 2^{\frac {3}{4}} {\left (f^{5} \cos \left (f x + e\right )^{2} - f^{5}\right )} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} \frac {1}{f^{4}}^{\frac {1}{4}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {3}{4}} \sqrt {\frac {1}{2}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{5} \sqrt {-\frac {2^{\frac {3}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{3} \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {3}{4}} \cos \left (f x + e\right ) - 2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} \cos \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 2 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {5}{4}} - \frac {1}{2} \cdot 2^{\frac {3}{4}} \sqrt {2 \, \sqrt {2} f^{2} \sqrt {\frac {1}{f^{4}}} + 4} f^{5} \sqrt {\frac {\cos \left (f x + e\right ) + \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \frac {1}{f^{4}}^{\frac {5}{4}} + f^{2} \sqrt {\frac {1}{f^{4}}} + \sqrt {2}\right )}{f^{4}}}{8 \, {\left (f \cos \left (f x + e\right )^{2} - f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/8*(2^(1/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(2*f*cos(f*x + e)^2 - sqrt(2)*(f^3*cos(f*x + e)^2 - f^3)*sqr
t(f^(-4)) - 2*f)*(f^(-4))^(1/4)*log(1/2*(2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*x + e) +
 sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4)*cos(f*x + e) + 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) + 2*cos(f*x
 + e) + 2*sin(f*x + e))/cos(f*x + e)) - 2^(1/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(2*f*cos(f*x + e)^2 - sqr
t(2)*(f^3*cos(f*x + e)^2 - f^3)*sqrt(f^(-4)) - 2*f)*(f^(-4))^(1/4)*log(-1/2*(2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f
^(-4)) + 4)*f^3*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4)*cos(f*x + e) - 2*sqrt(2)*f^2*s
qrt(f^(-4))*cos(f*x + e) - 2*cos(f*x + e) - 2*sin(f*x + e))/cos(f*x + e)) + 8*sqrt((cos(f*x + e) + sin(f*x + e
))/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) - 4*(cos(f*x + e)^2 - 1)*log(sqrt((cos(f*x + e) + sin(f*x + e))/cos
(f*x + e)) + 1) + 4*(cos(f*x + e)^2 - 1)*log(sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e)) - 1) + 4*2^(3/4)
*(f^5*cos(f*x + e)^2 - f^5)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(f^(-4))^(1/4)*arctan(1/2*2^(3/4)*sqrt(1/2)*s
qrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^5*sqrt((2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*x +
 e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4)*cos(f*x + e) + 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) + 2*co
s(f*x + e) + 2*sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) - 1/2*2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f
^5*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) - f^2*sqrt(f^(-4)) - sqrt(2))/f^4 + 4*2^(3/
4)*(f^5*cos(f*x + e)^2 - f^5)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(f^(-4))^(1/4)*arctan(1/2*2^(3/4)*sqrt(1/2)
*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^5*sqrt(-(2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*f^3*sqrt((cos(f*
x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4)*cos(f*x + e) - 2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) - 2
*cos(f*x + e) - 2*sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) - 1/2*2^(3/4)*sqrt(2*sqrt(2)*f^2*sqrt(f^(-4)) + 4
)*f^5*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(5/4) + f^2*sqrt(f^(-4)) + sqrt(2))/f^4)/(f*co
s(f*x + e)^2 - f)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {\tan {\left (e + f x \right )} + 1} \cot ^{2}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2*(1+tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(tan(e + f*x) + 1)*cot(e + f*x)**2, x)

________________________________________________________________________________________

Giac [A]
time = 1.10, size = 330, normalized size = 1.15 \begin {gather*} -\frac {\log \left (\sqrt {\tan \left (f x + e\right ) + 1} + 1\right )}{2 \, f} + \frac {\log \left ({\left | \sqrt {\tan \left (f x + e\right ) + 1} - 1 \right |}\right )}{2 \, f} - \frac {{\left (f^{2} \sqrt {\sqrt {2} + 1} + f \sqrt {\sqrt {2} - 1} {\left | f \right |}\right )} \arctan \left (\frac {2^{\frac {3}{4}} {\left (2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right )}}{2 \, \sqrt {-\sqrt {2} + 2}}\right )}{2 \, f^{3}} - \frac {{\left (f^{2} \sqrt {\sqrt {2} + 1} + f \sqrt {\sqrt {2} - 1} {\left | f \right |}\right )} \arctan \left (-\frac {2^{\frac {3}{4}} {\left (2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} - 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right )}}{2 \, \sqrt {-\sqrt {2} + 2}}\right )}{2 \, f^{3}} - \frac {{\left (f^{2} \sqrt {\sqrt {2} - 1} - f \sqrt {\sqrt {2} + 1} {\left | f \right |}\right )} \log \left (2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} \sqrt {\tan \left (f x + e\right ) + 1} + \sqrt {2} + \tan \left (f x + e\right ) + 1\right )}{4 \, f^{3}} + \frac {{\left (f^{2} \sqrt {\sqrt {2} - 1} - f \sqrt {\sqrt {2} + 1} {\left | f \right |}\right )} \log \left (-2^{\frac {1}{4}} \sqrt {\sqrt {2} + 2} \sqrt {\tan \left (f x + e\right ) + 1} + \sqrt {2} + \tan \left (f x + e\right ) + 1\right )}{4 \, f^{3}} - \frac {\sqrt {\tan \left (f x + e\right ) + 1}}{f \tan \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

-1/2*log(sqrt(tan(f*x + e) + 1) + 1)/f + 1/2*log(abs(sqrt(tan(f*x + e) + 1) - 1))/f - 1/2*(f^2*sqrt(sqrt(2) +
1) + f*sqrt(sqrt(2) - 1)*abs(f))*arctan(1/2*2^(3/4)*(2^(1/4)*sqrt(sqrt(2) + 2) + 2*sqrt(tan(f*x + e) + 1))/sqr
t(-sqrt(2) + 2))/f^3 - 1/2*(f^2*sqrt(sqrt(2) + 1) + f*sqrt(sqrt(2) - 1)*abs(f))*arctan(-1/2*2^(3/4)*(2^(1/4)*s
qrt(sqrt(2) + 2) - 2*sqrt(tan(f*x + e) + 1))/sqrt(-sqrt(2) + 2))/f^3 - 1/4*(f^2*sqrt(sqrt(2) - 1) - f*sqrt(sqr
t(2) + 1)*abs(f))*log(2^(1/4)*sqrt(sqrt(2) + 2)*sqrt(tan(f*x + e) + 1) + sqrt(2) + tan(f*x + e) + 1)/f^3 + 1/4
*(f^2*sqrt(sqrt(2) - 1) - f*sqrt(sqrt(2) + 1)*abs(f))*log(-2^(1/4)*sqrt(sqrt(2) + 2)*sqrt(tan(f*x + e) + 1) +
sqrt(2) + tan(f*x + e) + 1)/f^3 - sqrt(tan(f*x + e) + 1)/(f*tan(f*x + e))

________________________________________________________________________________________

Mupad [B]
time = 3.89, size = 121, normalized size = 0.42 \begin {gather*} \frac {\mathrm {atan}\left (\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{f}+\frac {\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}}{f-f\,\left (\mathrm {tan}\left (e+f\,x\right )+1\right )}+\mathrm {atan}\left (f\,\sqrt {\frac {-\frac {1}{4}-\frac {1}{4}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,\left (1-\mathrm {i}\right )\right )\,\sqrt {\frac {-\frac {1}{4}-\frac {1}{4}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i}-\mathrm {atan}\left (f\,\sqrt {\frac {-\frac {1}{4}+\frac {1}{4}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,\left (1+1{}\mathrm {i}\right )\right )\,\sqrt {\frac {-\frac {1}{4}+\frac {1}{4}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)^2*(tan(e + f*x) + 1)^(1/2),x)

[Out]

(atan((tan(e + f*x) + 1)^(1/2)*1i)*1i)/f + (tan(e + f*x) + 1)^(1/2)/(f - f*(tan(e + f*x) + 1)) + atan(f*((- 1/
4 - 1i/4)/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*(1 - 1i))*((- 1/4 - 1i/4)/f^2)^(1/2)*2i - atan(f*((- 1/4 + 1i/4)
/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*(1 + 1i))*((- 1/4 + 1i/4)/f^2)^(1/2)*2i

________________________________________________________________________________________